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a Department of Aquatic Sciences, College of Aquatic Sciences and Fisheries, Mwalimu Julius K. Nyerere University of Agriculture and Technology, P. O Box 976, 
Musoma, Tanzania 
b Department of Sustainable Agriculture, Biodiversity and Ecosystem Management, School of Life Sciences and Bio-Engineering, Nelson Mandela - African Institution of 
Science and Technology, P. O Box 447, Arusha, Tanzania 
c Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium 
d Community Ecology Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium 
e Centre for Environmental Management, University of the Free State, P. O. Box 339, Bloemfontein, 9300, South Africa 
f Water Research Group, Unit for Environmental Sciences, And Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa   
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• Fish with non-generic life-histories are 
seldom included in ecotoxicological 
tests. 

• Sensitivity of N. neumanni to Roundup 
was higher than in classic fish models. 

• Sensitivity to cypermethrin was lower 
compared to classic fish models. 

• Overall, killifish sensitivity to pollutants 
is in line with that of other fish species.  
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A B S T R A C T   

Pesticides are crucial to improve agricultural productivity, but often adversely affect surrounding aquatic sys
tems and their fauna. To determine the environmental risk of pesticides, routine ecotoxicological tests are 
performed on several organisms, including standard fish models. However, these typically do not include fish 
species from variable habitats and with non-generic life-histories. In particular, inhabitants from temporary 
ponds such as annual killifish are conventionally understood to be resilient to natural stressors which could 
translate to higher pesticide resistance or, alternatively, trade-off with their resistance to pesticides and render 
them more sensitive than classic fish models. Using standard exposure tests, we assessed short-term toxicity 
effects of two commonly used pesticides, Roundup and cypermethrin, on the annual killifish Nothobranchius 
neumanni, and compared its sensitivity with that of classic fish models. For Roundup, we found a 72 h-LC50 of 
1.79 ± 0.11 mg/L, which is lower than the values reported for zebrafish, medaka, fathead minnow and rainbow 
trout, suggesting that N. neumanni is more sensitive to the compound. The opposite was true for cypermethrin, 
with a 72 h-LC50 of 0.27 ± 0.03 mg/L. However, these LC50-values do not deviate strongly from those reported 
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for other fish species, supporting earlier findings in the congeneric N. furzeri that the sensitivity of annual killifish 
to pollutants is similar to that of classic fish models despite their assumed robustness to environmental stress.   

1. Introduction 

Agricultural pesticide use is critical to foster crop productivity, but 
their use often has undesired and far-reaching effects on adjacent 
freshwater ecosystems (Stoate et al., 2009). Through various mecha
nisms including runoff and wind drift, a wide variety of pesticides enter 
the natural environment (Bonmatin et al., 2015). These include, among 
others, insecticides such as cypermethrin and herbicides such as 
Roundup. 

Cypermethrin is a pyrethroid insecticide that is commonly used in 
agriculture, forestry and horticulture around the world (Shi et al., 2011). 
This broad-spectrum pesticide is strongly neurotoxic for insects (Shi 
et al., 2011) and diffuses easily through the cell membrane of various 
organisms due to its high lipophilicity (Paravani et al., 2019). Besides 
targeting pest species, the compound is also highly toxic for non-target 
organisms. For instance, in fish, cypermethrin interferes with neuro
transmission by blocking neuronal sodium channels (Velisek et al., 
2006). 

On the other hand, glyphosate-based herbicides such as Roundup are 
widely used in agriculture and for aquatic weed control (Ortiz-Ordoñez 
et al., 2011). Roundup consists of its main active ingredient (glyphosate) 
and a nonionic surfactant (polyethoxylene amine, POEA) to facilitate 
uptake in plants (Hued et al., 2012). It inhibits plant growth by inter
fering in the production of essential aromatic amino acids (Hued et al., 
2012), but is also highly toxic for non-target aquatic animals as it causes 
oxidative stress through the production of reactive oxygen species 
(Ortiz-Ordoñez et al., 2011). Previous studies indicate that the toxicity 
of Roundup in fish may be mediated by glyphosate as well as POEA 
(Folmar et al., 1979; Ortiz-Ordoñez et al., 2011). 

To assess the environmental risks of pesticides, routine ecotoxico
logical tests are used to determine the lethal effects of short-term (acute) 
exposure to a compound (Chapman et al., 1998). Typically, such eco
toxicological tests are performed on standard model organisms across 
trophic levels (Nienstedt et al., 2012). Fish-based tests are a fundamental 
component and are performed on standard model species including 
zebrafish (Danio rerio), medaka (Oryzias latipes), and rainbow trout 
(Oncorhynchus mykiss) (Thoré et al., 2021a). Mechanisms of toxicity are 
often evolutionary conserved in fish (Griffith, 2017), which generally 
allows to extrapolate results of toxicity across fish taxa. 

Fish species with non-generic life-histories (i.e. physiological attri
butes and life-history strategies that are rare or absent in standard fish 
models) from variable habitats like temporary wetlands are typically not 
included in standard ecotoxicological screening (Thoré et al., 2021a). 
Temporary wetlands are characterized by periodic drought and flood
ing. Resident organisms such as annual fish species are adapted to this 
seasonality by completing their life cycle in a very short time window 
and by producing drought-resistant eggs that bridge the dry period in 
the sediment (Nagy and Watters, 2019). Nothobranchius killifish, for 
instance, inhabit temporary freshwater ponds across central, eastern and 
southern Africa (Nagy and Watters, 2019). These fish typically mature in 
3–4 weeks and have a short lifespan of about 6 months (Thoré et al., 
2019a,b; Philippe et al., 2017). Because of their unique life-history, 
Nothobranchius killifish have recently become popular as study species 
in several fields of study, including gerontology (Reichwald et al., 2015), 
genomics (Cellerino et al., 2016), ecology (Grégoir et al., 2017, 2018), 
evolutionary biology (Blažek Radim and Reichard, 2013), behavioral 
biology (Thoré et al., 2018, 2019a) and ecotoxicology (Philippe et al., 
2019). Their increasing popularity mainly derives from a fast generation 
time and short lifespan making full life-cycle and multigenerational tests 
possible in a relatively short time (Thoré et al., 2020a), 2021a). They 
also produce drought-resistant eggs that can be stored on the shelf and 

synchronously hatched on demand (Thoré et al., 2020b; Thoré et al., 
2021a). 

Nothobranchius killifish play a key role in the food web of temporary 
wetlands (Nagy and Watters, 2019; de Necker et al., 2020) through 
strong predation on the invertebrate community (Pinceel et al., 2021). 
Because these wetlands are home to unique biota and contribute 
significantly to biodiversity conservation (Waterkeyn et al., 2008), un
derstanding how key species in these systems are affected by pesticide 
pollution is crucial to define tailored management practices – especially 
in developing regions where increasing intensification of agriculture 
threatens the integrity of wetlands. 

Annual killifish are adapted to seasonal drying of their habitat and 
are conventionally understood to be resistant to strong daily fluctuations 
in environmental conditions (e.g., water temperature, dissolved oxygen) 
that are inherent to their habitat. Specifically, Nothobranchius killifish 
invest in fast development (Cellerino et al., 2016), high reproductive 
output (Polačik et al., 2016) and rapid acclimation to stress through 
general homeostatic mechanisms (e.g., cortisol production along the 
hypothalamic-pituitary-interrenal axis) (Henderson and Small, 2019). 
These mechanisms could also contribute to a higher resistance to pes
ticides or, alternatively, their robustness to natural stress may trade-off 
with their pesticide resistance (Lahr, 1997) and ultimately render them 
more sensitive than classic fish models. This is because limited energy 
budgets typically imply trade-offs that constrain energetic investment in 
other traits (Podrabsky et al., 2015; Thoré et al., 2019b) such as specific 
detoxification mechanisms which are needed to cope with the specific 
mode of action of pesticides (Ferreira et al., 2015). However, recent 
research with N. furzeri offered limited to no support for these hypoth
eses, showing that its sensitivity to acute pollutant exposure is compa
rable to that of classic fish models (Philippe et al., 2017; Philippe et al., 
2019; Thoré et al., 2021b). Here, we aim to further explore this by 
testing the toxicity of different compounds in the congeneric 
N. neumanni, a dominant killifish species from temporary wetlands in 
northern and central Tanzania (Nagy and Watters, 2019). Specifically, 
we assessed how acute exposure to two common pesticides – cyper
methrin and Roundup – affects the survival of juvenile fish and 
compared its sensitivity (LC50) to that of classic fish models (including 
zebrafish, fathead minnow, medaka and rainbow trout). We chose 
cypermethrin and Roundup as both pesticides account for over 50% of 
used pesticides in the region (Manyilizu et al., 2017). 

2. Material and methods 

2.1. Preparation of exposure media 

Cypermethrin (Sigma - C2237, 98.0%) was purchased from Sigma- 
Aldrich (St. Louis, MO, USA). A stock solution of 100 mg/L was pre
pared with Milli-Q grade water and stored at − 20 ◦C. Roundup was 
purchased from a local pesticide shop in Arusha, Tanzania available as 
Roundup 360 SL (Monsanto, Bayer Agriculture BVBA, Belgium), which 
has pure N-phosphonomethylglycine – glyphosate (74.70%) as active 
ingredient and POEA (25.30%) as surfactant. A stock solution of 1 g/L 
Roundup was prepared and stored at − 20 ◦C. Experimental medium was 
produced by adding pesticide stock solution to reconstituted water (see 
below for concentrations). Reconstituted water was prepared by adding 
standardized salt (Instant Ocean Sea Salt, Instant Ocean-Aquarium 
Systems, Fiji) to distilled water to a conductivity of 490 μS/cm. 
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2.2. Collection and maintenance of experimental fish 

2.2.1. Paternal generation 
Wild N. neumanni adult fish were initially collected from temporary 

ponds (pooled sample from a total of 4 ponds) in the Lake Manyara basin 
(Northern Tanzania) in April 2020, under permit number TWRI/RS- 
331/VOL.IV/2013/39 issued collaboratively by the Tanzania Commis
sion for Science and Technology and the Wildlife Research Institute. 
These fish were transferred and kept in the laboratory at optimal 
breeding conditions: fish were kept in 100-L aerated static reconstituted 
water tanks in social groups of 40 individuals per tank, at a water 
temperature of 27 ± 1 ◦C, 490 μS/cm conductivity (as observed in their 
natural habitat) and a 14:10 h light:dark regime. Fish were fed twice 
daily (morning and evening) to satiation with live brine shrimp nauplii 
and frozen Chironomus larvae (Polačik et al., 2016). Adult fish (n = 80) 
were allowed to spawn in 8-L tanks provided with fine sand as spawning 
substrate. For this, three mature females were coupled with one male for 
three days (i.e. 20 spawning groups of 4 fish each). Afterwards, sand was 
sieved (~1 mm mesh size) to collect eggs. After collection, eggs from all 
spawning groups were pooled and stored on moist peat at 17 ◦C (Polačik 
et al., 2016). 

2.2.2. Experimental fish 
Prior to hatching, about 350 eggs were incubated at 28 ◦C for three 

weeks to stimulate embryo development (Polačik et al., 2016). 
Following the protocol by Philippe et al. (2018a), N. neumanni fry were 
hatched by inundating the eggs with reconstituted water at a tempera
ture of 15 ◦C. Afterwards, water temperature gradually converged to 
room temperature (27 ◦C). Forty-eight hours after hatching (i.e. at an 
age of two days), 264 healthy and buoyant N. neumanni hatchlings were 
randomly assigned to an experimental treatment and transferred indi
vidually to a transparent 0.5-L glass jar for individual monitoring. 
Starting 24 h post hatching and throughout the experiment, fish were 
fed to satiation with freshly hatched Artemia nauplii (Ocean Nutrition, 
Essen, Belgium) twice a day. The experimental jars were subjected to a 
14 h:10 h light:dark regime. Experimental medium was refreshed every 
other day. Throughout the experiment, dissolved oxygen levels were 
kept above 80% by refreshing the experimental medium every 48 h to 
maintain good water quality. Conductivity ranged between 490 ± 10 

μS/cm, and pH was 7.8 ± 0.4. Water temperature in all jars was main
tained at 27 ± 1 ◦C using thermostats in water tubs. 

3. Experimental protocol 

The acute exposure tests (Fig. 1) with cypermethrin and Roundup 
were carried out following the protocol by Philippe et al. (2018a). For 
both products, five nominal concentrations (cypermethrin: 0.05, 0.1, 
0.2, 0.4, and 0.8 mg/L; Roundup: 0.3, 0.6, 1.2, 2.4, and 4.8 mg/L) and a 
control (i.e. reconstituted water as described above with no added 
pesticide) were used. Achieved concentrations were 0.043; 0.06; 0.15, 
0.31 and 0.58 (60–86.5% of the nominal concentrations) for cyper
methrin, measured using GC-MS (Model QP 2010, Shimadzu corpora
tion, Japan). For Roundup, achieved concentrations were 0.21, 0.69, 
0.92, 2.43, and 2.73 mg/L (57–115% of the nominal concentrations), 
measured using High performance Liquid Chromatography (Model 
Wufeng LC 100, China) with a UV detector. Due to lack of literature on 
acute effects of pesticides on N. neumanni, nominal concentrations for all 
pesticides were selected based on prior range finding test results (Sup
plementary Material). For each pesticide, treatments were replicated 22 
times. Throughout the experiment (total duration of 96 h), mortality was 
monitored daily at 24, 48, 72 and 96 h after the start of exposure. 

We searched the ECOTOX database (US Environmental Protection 
Agency), Google Scholar, Web of Science and PubMed (keywords 
included ‘cypermethrin’, ‘Roundup’, ‘glyphosate’, ‘fish toxicity’, ‘LC50’) 
to find comparable acute exposure tests in other fish for interspecies 
comparison. 

3.1. Animal welfare statement 

Throughout the experiment, procedures and methods were in 
accordance with the animal welfare commission requirements of 
Tanzania. Experimental fish were checked twice daily by the researcher. 
To reduce stress and discomfort on exposed fish, disturbance and 
handling were kept to a minimum. At the end of the experiment, fish 
from the control condition were reassigned as breeding fish, while sur
viving fish that were exposed to the pesticide were euthanized by means 
of an overdose of MS-222 (250 mg/L of tricaine). 

Fig. 1. Experimental design to assess the sensitivity of Nothobranchius neumanni to cypermethrin and Roundup exposure. Fish were kept in individual jars, and each 
treatment was replicated 22 times. 
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3.2. Data analysis 

Data analysis was performed in R v3.2.1 (R Development Core Team, 
2016). In all treatment jars, a binary outcome was assigned as either 
0 (dead) or 1 (alive). LC50 values were calculated from achieved pesti
cide dose-response curves at 24, 48, 72, and 96 h in which mortality was 
used as response variable (Ritz et al., 2015), using the ‘drm’ function in 
the drc package (version 3.5.0). The reported standard error (SE) for 
LC50 values is a measure for the reliability of the LC50 values (Ritz et al., 
2015). We set the maximum cut-off at SE < 15% for reliable LC50 values. 
This criterion was reached for 72 h-LC50 values, which are therefore 
focused on in the Results section. 

4. Results 

During the entire exposure duration, survival was 100% in the con
trol condition of both pesticides. The LC50 values for cypermethrin and 
Roundup at different time points during the exposure duration are 
presented in Table 1, with their respective standard errors. For both 
pesticides, LC50 values decreased with increasing exposure duration. 
The LC50 values ranged from 0.44 mg/L at 24 h to 0.25 mg/L at 96 h for 
cypermethrin, and from 2.36 mg/L at 48 h to 1.67 mg/L at 96 h for 
Roundup. The dose – response curves after 72 h of exposure for both 
pesticides are shown in Fig. 2. Because no mortality was recorded at 24 h 
of Roundup exposure, this 24 h-LC50 value could not be calculated. LC50 
values for cypermethrin and Roundup for interspecies comparison are 
given in Table 2. 

5. Discussion 

We assessed the short-term toxicity of two commonly used pesti
cides, cypermethrin and Roundup, on the annual killifish Nothobranchius 
neumanni and compared its sensitivity to that of classic fish models. 
Nothobranchius neumanni was more sensitive to Roundup than classic 
fish models, while the opposite was observed for cypermethrin. How
ever, the observed LC50-values do not deviate strongly from those re
ported for other fish species, suggesting that the sensitivity of 
N. neumanni to pollutants is in line with that of other species despite 
their assumed robustness to environmental stress. 

Following the hypothesis that high resilience to natural stressors may 
trade off with pesticide resistance in temporary pond organisms due to 
limited energy budgets that constrain energetic investment in detoxifi
cation mechanisms (Lahr, 1997; Thoré et al., 2021b), we expected 
N. neumanni to be more sensitive to pesticides than classic fish models. In 
line with this hypothesis, the sensitivity of N. neumanni to Roundup (72 
h-LC50 = 1.79 mg/L) was ~10x higher than that of zebrafish (96 h-LC50 
= 10.17 mg/L), medaka (96 h-LC50 = 8.5 mg/L for glyphosate specif
ically) and rainbow trout (96 h-LC50 = 8.3 mg/L), suggesting that the 
resistance of N. neumanni to the specific mode of action of Roundup is 
lower than that other fish species. Although the mode of action of 
Roundup toxicity in non-target species is not fully understood (Mottier 
et al., 2014), several studies have reported neurotoxic effects that are 

related to a lowered acetylcholinesterase activity (Menéndez-Helman 
et al., 2012; Abdelghani et al., 1997; de Brito Rodrigues et al., 2017; 
Gholami-Seyedkolaei et al., 2013; Kreutz et al., 2008). Moreover, reac
tive oxygen species are produced that lead to oxidative damage (Van 
Bruggen et al., 2018). Alternatively and non-mutually exclusive, the 
high pace-of-life of N. neumanni compared to classic fish models may 
result in a higher uptake of the compound and lead to rapid accumu
lation in tissues, but this hypothesis remains to be tested. It is worth 
noting that we compared a 72-h LC50 value for N. neumanni to a 96-h 
LC50 value for zebrafish, medaka and rainbow trout. The lower LC50 of 
N. neumanni, despite shorter exposure time, corroborates our observa
tion that N. neumanni may be more sensitive to this compound than 
classic fish models. Despite these observations, the difference in LC50 for 
Roundup between N. neumanni and fathead minnow (Pimephales prom
elas) is small (96 h-LC50 = 2.3 mg/L), showing that N. neumanni sensi
tivity to Roundup does not necessarily deviate strongly from that of 
other fish. 

Sensitivity of N. neumanni to cypermethrin could be linked to the 
lipophilic nature of cypermethrin, which binds and gets absorbed easily 
via fish gills. The compound is metabolized slowly which increases the 
time in the body (Velisek et al., 2006). In the body, cypermethrin in
hibits acetylcholinesterase, resulting in a higher level of acetylcholine in 
the synaptic cleft (Ullah et al., 2018). Cypermethrin also causes hyper
excitability by interacting with Na+ channels, and prolongs the depo
larization phase in synaptic clefts (Ullah et al., 2018). Moreover, 
cypermethrin forms toxic metabolites (cyanohydrin, cyanides and al
dehydes) that cause oxidative damage through production of reactive 
oxygen species (Ullah et al., 2018). The sensitivity of N. neumanni was 
~100x lower than that of traditional fish models such as zebrafish, 
medaka and rainbow trout, but still in line with values reported for other 
fish species. Consistent with this finding, earlier studies using the 
congeneric N. furzeri showed that its sensitivity to reference pesticides is 
comparable to that of commonly studied fish species rather than being 
higher (Philippe et al., 2018a,b). This suggests that the assumed 
robustness of annual killifish to natural environmental stress may not 
significantly mediate killifish sensitivity to pesticides. 

Although cypermethrin and Roundup account for over 50% of the 
used pesticides in East Africa (Manyilizu et al., 2017), very few studies 
exist on their environmental concentrations in surface waters in the 
region, where temporary wetlands are a dominant type of aquatic eco
systems. Cypermethrin was detected at concentrations between 0.0007 
and 40.7 μg/L in surface waters in South Africa (Ansara-Ross et al., 
2012), and at concentrations ranging from 8.115 to 15.460 mg/L in 
Southern Malawi (Kanyika-Mbewe et al., 2020). To date only one study 
is available on the presence of glyphosate in surface waters of South 
Africa and reports the levels of glyphosate to be below detection limit 
(0.2 μg/L) (Horn et al., 2019). 

The reported environmental concentrations for cypermethrin and 
Roundup to date seem to be below the reported lowest observable effect 
concentrations (LOEC) for N. neumanni. Still, this does not mean that 
there is no risk for surface waters. In this study, the LOEC was 0.1 mg/L 
for cypermethrin and 0.6 mg/L for Roundup. Based on short- and long- 
term toxicity tests with eight different aquatic species from five different 
taxonomic groups, Mensah et al. (2013) recommended safe concentra
tions of 0.250 (0.106–0.589) mg/L and 0.002 (0.000–0.021) mg/L for 
Roundup, respectively. If these standards are maintained, direct mor
tality effects of Roundup on N. neumanni in the field seem unlikely. 
Although LC50-values are good parameters to estimate the relative 
toxicity of chemicals, it is important to consider that sub-lethal con
centrations of pesticides may also adversely affect organisms, for 
instance by interfering with life-history traits (e.g. fecundity, growth and 
maturation time), physiology (e.g. stress levels, energy reserves), and 
behavior (e.g. anti-predator and foraging behavior, swimming activity, 
mating). An additional factor that should be considered is that, in the 
field, N. neumanni are likely exposed over longer time periods rather 
than acutely. Cypermethrin is indeed used all year round in Northern 

Table 1 
LC50 values at 24, 48, 72 and 96 h after the start of exposure to cypermethrin and 
Roundup, including the corresponding standard errors and p-values.   

Duration (h) LC50 (mg/L) Standard error p-value 

Cypermethrin 24 0.44 0.08 <0.001  
48 0.35 0.24 0.1391  
72 0.27 0.03 <0.001a  

96 0.25 0.18 0.1679 

Roundup 24 / / /  
48 2.36 0.32 <0.001  
72 1.79 0.11 <0.001a  

96 1.67 0.19 <0.001  

a Reliable LC50 values. 
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Tanzania with an application frequency that varies depending on tar
geted crops (Manyilizu et al., 2017). In onion farming, for instance, 
cypermethrin can be sprayed 8–12 times until harvest (Manyilizu et al., 
2017). As the half-life of cypermethrin in water is 28 days (Laskowski, 
2002), it is likely that wildlife is chronically exposed to this compound. 
Similarly, glyphosate has a half-life of 30 days in water and has been 
detected in surface waters even after 60 days of application (de Brito 
Rodrigues et al., 2019). Consequently, organisms are likely to experi
ence effects of long-term exposure, even when exposed to concentrations 
that do not elicit observable effects on the short term. For instance, a 
recent study showed that the neuroactive chemical fluoxetine did not 
affect fish somatic growth in the first generation of exposed fish, while 
an inhibitory effect emerged only after two generations of exposure 
(Thoré et al., 2021c). Furthermore, it is important to note that organisms 
may be able to adapt to pesticide exposure resulting in a higher pesticide 
resistance (Christie et al., 2019), which should be taken into account in 
follow-up studies. 

6. Conclusion 

Despite the fact that annual killifish are typically assumed to be 
robust to environmental stress, our results suggest that the sensitivity of 
N. neumanni to the tested compounds cypermethrin and Roundup is in 
line with that of other fish species. Future research should assess the 
sensitivity of other ecologically relevant traits (fecundity, age at matu
ration, behavior) as not all traits are equally affected by chemical 
exposure (Thoré et al., 2019b). To better understand the long-term 
impact of exposure to pesticides, we suggest to also include embryo 
sensitivity and multigenerational effects of pesticide exposure. 
Furthermore, with an understanding that in nature organisms are 
concurrently exposed to a cocktail of stressors (Bonifacio and Hued, 
2019; Bonifacio et al., 2020), dose response relationships should ideally 
be evaluated under scenarios of several co-occurring chemical and 
natural stressors. 

Authorship contribution statement 

Yusuph A. Kafula: Conceptualization, Methodology, Formal analysis, 

Figure 2. Dose-response curves showing cumulative mortality after 72 h of exposure of Nothobranchius neumanni to (a) cypermethrin and (b) Roundup.  

Table 2 
Acute sensitivity of different fish species to cypermethrin, Roundup and glyphosate.  

Compound Species Time (h) LC50 (mg/L) Life stage T (◦C) Reference 
Cypermethrin Nothobranchius neumanni 96 0.25 Juvenile 27 ± 1 a 

Channa punctatus 96 0.4 Adult 27 ± 1 Kumar et al. (2007) 
Clarias batrachus 96 0.21 Adult – Begum (2005) 
Cyprinus carpio 96 0.0026 Juvenile 20 Saha and Kaviraj (2008) 
Danio rerio 96 0.0021 Juvenile 25 Uddin et al. (2018) 
Labeo rohita 96 0.139 Juvenile 26.5 Das and Mukherjee (2003) 
Oncorhynchus mykiss 96 0.0031 Juvenile 15.8 Velisek et al. (2006) 
Oreochromis niloticus 96 0.006 Adult 24 ± 1 Sarikaya (2009) 
Oryzias latipes 48 0.0385 Juvenile 25 ± 1 Kim et al. (2008) 
Oryzias latipes 96 0.1114 Embryo 25 ± 1 Kim et al. (2008) 
Poecilia reticulata 48 0.0214 Adult 22 ± 1 Polat et al. (2002) 
Rhamdia quelen 96 1.17 Juvenile 24 ± 1 Montanha et al. (2012) 

Roundup (glyphosate þ POEA) Nothobranchius neumanni 72 1.79 Juvenile 27 ± 1 a 

Cyprinus carpio 96 22.19 Juvenile 20 ± 1 Gholami-Seyedkolaei et al. (2013) 
Danio rerio 96 10.17 Juvenile 26 ± 1 de Brito Rodrigues et al. (2017) 
Ictalurus punctatus 96 13 Juvenile 22 Folmar et al. (1979) 
Jenynsia multidentata 96 19.02 Adult 21 ± 1 Hued et al. (2012) 
Lepomis microchirus 96 13.0 Juvenile 19.5 Abdelghani et al. (1997) 
Oncorhynchus mykiss 96 8.3 Juvenile 12 Folmar et al. (1979) 
Oreochromis niloticus 96 16.8 Juvenile 26.0 Jiraungkoorskul et al. (2003) 
Pimephales promelas 96 2.3 Juvenile 22 Folmar et al. (1979) 
Piaractus mesopotamicus 48 3.74 Adult 26 ± 1 Shiogiri et al. (2012) 
Prochilodus lineatus 96 13.69 Juveniles 22 Langiano and Martinez (2008)  
Pseudoplatystoma sp. 96 15 Juvenile – Sinhorin et al. (2014)  

Rhamdia quelen 96 7.3 Juvenile 22 ± 2 Kreutz et al. (2008) 
Glyphosate Oncorhynchus mykiss 96 140 Juvenile 22 Folmar et al. (1979) 

Oryzias latipes 96 160 Juvenile 25 ± 1 Uchida et al. (2012) 
Pimephales promelas 96 97 Juvenile 22 Folmar et al. (1979)  

a This study. 
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Appendix 

24 h range finding results for Roundup 

In range finding trials, we used five concentrations and a control. Each treatment was replicated five times. The nominal concentrations used were 
0.25, 0.5, 1, 2 and 4 mg/L of Roundup. 

Parameter estimates: 
Estimate Std. Error t-value p-value. 
Slope:(Intercept) − 1.66127 1.03092–1.6114 0.24840. 
Lower Limit:(Intercept) − 2.84468 17.86008–0.1593 0.88808. 
Upper Limit:(Intercept) 110.35710 30.85290 3.5769 0.07005. 
LC50:(Intercept) 1.58082 0.92267 1.7133 0.22879. 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1.

Fig. 2. Dose-response curve showing cumulative mortality after 24 h of exposure of Nothobranchius neumanni to Roundup concentration gradients.  

24 h range finding results for Cypermethrin 

In range finding trials, we used five concentrations and a control. Each treatment was replicated five times. The nominal concentrations used were 
0.05, 0.1, 0.2, 0.4 and 0.8 mg/L of cypermethrin. 

Parameter estimates: 
Estimate Std. Error t-value p-value. 
Slope:(Intercept) − 1.4480e+01 4.3148e-01 -33.5594 4.66e-08 *** 
Lower Limit:(Intercept) − 1.8799e-04 2.7152e-04 -0.6924 0.5146. 
Upper Limit:(Intercept) 1.0000e+02 3.6719e-04 272341.4378 < 2.2e-16 *** 
LC50:(Intercept) 2.2989e-01 5.4593e-03 42.1095 1.20e-08 *** 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1. 
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Fig. 3. Dose-response curve showing cumulative mortality after 24 h of exposure of Nothobranchius neumanni to Cypermethrin concentration gradients.  
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